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1.0 Introduction

Currently, quite a few missions are being studied to send satellites to the outer
and inner planets and their moons of the solar system; a large percentage of
these missions will have a landed element. NASA’s Origins program, Solar
System Exploration Program and Sun Earth Connection (SEC) program, etc.,
will have a variety of spacecrafts to various solar system planets and their moons
to sample and analyze the related atmospheres as well as the soil once the
lander lands on the body. These sampling missions may involve a lander
element sampling the atmosphere by performing experiments while descending
into the atmosphere or a rover collecting samples to return to Earth or a station
for experimentation on the planet surface. In either of these cases, the pertinent
data generated will have to be sent to the Earth through a communication link.
Communications with the lander during the Entry, Decent and Landing (EDL)
phases of a mission is of paramount importance. This article explores a particular
method of passing through the atmosphere while communicating with the ground
station (DSN station) before landing an instrument package (the lander) on the
surface of the planet or moon of interest.

Whether the future mission desires to land an instrument package on the surface
of the extra-terrestrial body under investigation or it plans to study the body’s
atmospheric content as well as its properties, the best scenario is use of either a
parachute or a balloon or some variation thereof. Specially in the case of
missions designed for measuring the atmospheric contents of the body, the
needed measuring instruments must be placed in the atmosphere of the planet
and they need to be there for some appreciable amount of time for the
experiment to be completed and data to be generated. In this case a balloon or a
parachute is ideal because these devices remain in the atmosphere long enough
for the experiments, and also move around with the winds of the planet and
hence samples of the atmosphere may be obtained from various latitudes and
longitudes of the body. Many times the free flying balloon may go higher or lower
in the planet's atmosphere along with the thermals in the atmosphere and this
allows for more detailed measurements. In any case, it is very convenient to put
the measurement instruments in a gondola suspended from the
balloon/parachute and let it descend into the atmosphere of the planet while
taking data. Another advantage of a balloon/parachute is that the lander package
may be delivered to the surface with minimum shocks imparted to the package:
i.e., a soft and more or less controlled landing can be managed.



2.0 Direct Communications to Earth Station or Relay Links?

The data generated by the instruments and the experiments must be
communicated to the ground station either directly or via a relay link. Both
methods have advantages and drawbacks : a tradeoff must be made to select a
particular method.

The direct communications from the balloon/parachute gondola to Earth station
can be effected using a large enough antenna (mostly a large parabolic reflector)
on the gondola and carrying a large enough battery contingent to supply the
needed power to the communications system. However, the power required to
communicate with the Earth station (DSN) is, of course, dependent upon the data
rate generated and needed to be transmitted as well as the data fidelity (Bit Error
Rate, BER) needed along with the range (distance) between the planet of
interest and Earth. More often than not, the communications system for this link
becomes too heavy and bulky for the balloon or the parachute to carry and also
provide a proper decent rate through the atmosphere of the planet to be useful
for the atmospheric sampling and experimentation.

Many times the balloon or the parachute is deployed on a body that was visited
before and communications orbiters are already present around the body in
known orbits. This is especially true for Mars. In any case, even if there is no
communications orbiter present at the time of deployment of the parachute or the
balloon, the stage that brought the lander assembly to the desired heavenly body
can be appropriately designed and scheduled to be used as a communications
relay orbiter to serve the parachute/balloon relay link. The orbiter will also be
needed to relay the data generated by the landed package to the Earth station.
Even when the landed package may have equipment to establish a direct
communications to Earth, the orbiter relay link may serve as a backup
communications link or the direct and relay links may be worked together to
reduce the load on the direct communications link.

3.0 Requirements and Assumptions of the Com System

The exact requirements on the communications system may vary according to
the science requirements of the mission. However, following general
requirements may be levied on the communication system.

e A large enough data rate to transmit all the data taken in the
atmosphere within the time available during parachute/balloon
descent.



e The orbiter will have a system for tracking coarse/fine position
location of the balloon to minimize antenna pointing loss towards
the balloon/parachute carrying the landed element.

» Proper frequency selection commensurate with the atmospheric
absorption losses.

e The antenna on the balloon/gondola should not require pointing,
reducing the electronic equipment necessary for the
balloon/parachute operation. Thus, the antenna used on the
balloon/parachute must essentially be an omni antenna.

e [t will be assumed that the balloon/parachute will be in the orbital
plane of the orbiter. This assumption not only will reduce the
three dimensional problem to a simpler two dimensional problem
but it will provide the worst also case analysis in terms of the
range between the orbiter and the balloon/parachute. The
telecom system must be designed for the worst case range.

e |t will be assumed that the orbiter satellite is in a circular orbit at a
particular aititude from the planet’'s surface. This assumption is
most often true for a lander element carrying mission.

Initially, the carrier ship to the planet or a moon of a planet will carry the balloon
in a deflated manner. The balloon-carrying canister will be released at a
particular instant either by remote control from the ground or by autonomous
operation of the carrier satellite. This canister will have all the equipment for the
atmosphere sampling and the landed experimentation. It will also have
electronics, such as an altimeter, pressure sensors etc., which will help to decide
the altitude at which the balloon must be inflated. As the balloon is inflated, the
canister is discarded. Once the balloon is inflated using the appropriate gas, it
will float and go up and down dependent on the atmospheric conditions.



40 Theory

Figure 1 shows a balloon and the attached gondola descending on a
planet’'s/moon’s surface that has appreciable atmosphere. The gondola will be
carrying the instruments necessary to measure the atmospheric content and
perform any experiments. Along with the instruments, the gondola will also carry
the communications equipment to establish the link between the balloon and the
orbiter and send the data to the desired receiver. For the case when the landed
experimentation is required, the gondola will also carry the lander.

As was mentioned before, the communications receiver in this scenario can be
the ground station on the Earth. However, in this article it is assumed that the
balloon or the parachute communicates with the orbiter that is already in its
designated known orbit. Even though the word balloon is used in the following
write up, the analysis is equally valid for the parachute.

This analysis assumes that the antenna used on the balloon/parachute gondola
is a dipole/monopole antenna with the antenna placed vertically. The antenna
may be placed below the gondola, above the parachute or balloon, or on a
special mounting attached to the balloon assembly in some convenient manner.
The particular placement of the antenna may depend upon the shape of the
balloon/parachute and the placement of the communications transponder or
transceiver in the gondola. Large distances between the antenna input terminal
and the transponder/ transceiver will be avoided to reduce the line losses which
is @ major component of the losses in the communications assembly. A salient
assumption in this analysis is that the fabric of the balloon/parachute will be such
that it will of be totally transparent to the frequency of communication: i.e., even if
there is shadowing of the communications antenna by the balloon/parachute
material while communicating with the orbiter, the loss induced due to the
shadowing will be essentially 0 dB. This assumption may be true for some
frequency band more than for other frequency bands. Hence, a judicious
selection of the balloon/parachute material will be assumed. Figure 2 shows only
the dipole antenna in a vertical fashion. All the pertinent parameters necessary to
evaluate the performance of the communications system are defined below.
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is the position of the gondola in which the telecommunications
system with the dipole antenna is housed. As explained
before, the antenna is assumed to be placed vertically, so that
the toroidal antenna pattern of the antenna will be used for the
analysis to follow.

is the altitude of the balloon or parachute (more precisely, of
the antenna) at any time instant. Let this altitude be defined as
Ah, . Alsolet caA r +h,.

is radius of the planet or the moon around which the orbiter is
in a circular orbit A r, = OE.

is the angle from the antenna pattern maximum direction. Let
this angle be defined as A « . It would be good to see from the

geometry of the figure that the following angles are equal in
extent: ZBAJ = ZCAJ = ZHAE = ZHAF.

is the position of the orbiter satellite in its orbit. It is assumed
that the parachute or the balloon is in the orbital plane of the
satellite when the communications between those two takes
place. £SOL A e, gives the position of the satellite with

respect to the defined x axis.

is the limiting visibility position of the satellite from the
antenna: i.e., line AED is tangential to the planet at the point
E. Thus, the orbiter will not be able to “see” the
balloon/parachute below this point.

Is the altitude of the orbiter satellite in a circular orbit Ah.

Is the magnitude of the radius vector to the satellite
ga = r,+h.



Figure 1 A balloon with its gondola descending on a planet’s surface.
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Figure 2. Balloon/Parachute descent geometry.



It will be assumed that the telecommunications system is housed in a gondola
that is attached to the balloon or the parachute. In Figure 1, the letter A indicates
the position of the gondola and the antenna that is used for communications with
the orbiter. At this time, it will be assumed that the antenna used is the dipole
antenna. Also, it will be assumed that the parachute or the balloon is present in
the orbital plane of the satellite.

The object here is to compute the satellite visibility time for a given minimum gain
from the given position of the antenna. Towards that end, we will first compute
the coordinates of the points B, C, E, and F, which are shown in the figure
generated by the appropriate lines at an angle o to the maximum of the dipole
antenna direction AJ or AH. The coordinates of the points B and F are obtained
by the solution of the following simultaneous nonlinear equations:

Yy =mXx +C
y2 = -x? + a?

(4.1)

Where the quantities ‘c’ and ‘a’ are defined in terms of the satellite orbital
geometry and the balloon/parachute altitude as shown above. The parameter m
is defined as:

m = Tan(a)

(4.2)

Similarly, the coordinates of the points C and E are obtained by the solkuﬁon of
the following simultaneous equations.

y=-mx+¢
yz = -x2 + g2

(4.3)
The results of the solution of these equations are given below.



Point B(x,,y,):

2 2 2
yo = c i m mc L a-c
! 1+ m? 1+ m? 1+ m?

(4.4)
Point C(x,.y,):

(4.5)

Similarly one can obtain the coordinates of points E and F. The results obtained
are given below.

Point E (x,,y,):

2 2 2
« - [_mec )\ _ mc , a-c
3 1+m? 1+ m? 1+m?

2 2 2
y. = c . m mc L a-c
* 1+ m? 1+ m? 1+ m?



Point F(x,,vy,):

mc m : 2 . ¢c?

. - . _ c L a-c

¢ 1+ m? 1+ m? 1+ m?

yo = c Cm mc 2+ a’ - c?
¢ 1+ m? 1+ m? 1+ m?

The anglea provides the angle from the boresite of the antenna (the maximum
gain direction) for which the communications between the satellite and the
gondola can be sustained. The gain of the dipole antenna at the angle o from its
boresite can be computed from the gain function of the dipole antenna given
below in Equation (4.8). In that equation, | is the total length of the dipole and A
is the wavelength of the transmission frequency (velocity of light)/Frequency.

(4.7)

(4.8)

The denominator of the above equation is the normalization factor that must be
computed before the gain predicted by the antenna may be used. The
normalization factor is a function of the dipole length and the transmission
wavelength. Figure 3 plots the value of this factor as a function of the ratio of
dipole length to the transmission wavelength (h/rp) multiplied byr . Thus, for a
half wave dipole, the normalization factor is 1.22. A polynomial approximation to
the denominator can be devised and may be used, as is done below in equation
(4.9), to facilitate the computation of equation (4.8). The loss of precision by
using the approximation is only very little and, hence, can be used with
confidence. Thus, the formula given in Equation (4.9) now can be used to

10
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compute the gain of the dipole antenna in the pointing directiona . It should be
noted that the parameter n_, used in equations (4.8) and (4.9) is the antenna

efficiency and is in no way connected with the central angle n

G(a) = > 3
- 0.000781104 - 0.000921702 (%‘) +0.0926785 (%’) - 0.369984 (%')

4 5 5
+0.802439 (%') - 0.389927 (l;J) +0.04814 (%’]

(4.9)

5.0 Visibility of Orbiter for a Gain Angle of the Balloon Antenna

Once it is established that the communications link will be sustained for the given
set of system parameters and the transmit antenna gain G (a ), one can compute
the visibility time of the satellite for this condition: i.e., the time for which the
satellite will remain within the angle o above and below the boresite of the dipole
antenna (see Figure 2). It is the time for which the satellite stays within the arc
BC of the circle that is proportional to the central angle « COB in the same figure.
The angle « COB can be computed as follows:

ZCOB A 1 = Cos-‘[%'gg]

|oB| |OC|
(5.1)

Where OC is the vector from O to C, and OB is the vector from O to B in figure 2.

Using the coordinates of C, B and O (0,0) given in figure 2 one may reduce the
equation (5.1).

12



- -1 X; X, *y, ¥
n = Cos 21 2 122 2
\/x1 +Y; \/xz *+Y;

(5.2)

Using equations (4.4) and (4.5), ~ COB may be evaluated in terms of m, ¢, and a
as follows:

2 2
_{ mc a’- ¢? mc _ a*-c?
XX = 2 + I 2 - 2
1+m 1+m 1+m 1+m

_ c ¥ mc Y, a’-c?| _  c?-m?4?
YiY, = 2 -m 2 + 2 - T 2
1T+m 1+m 1+m 1+m

(5.3)
Thus,
< x. + _ a-¢ . cc-mfa® _ (1-m?) ,
1R T Y 1+ m? T+mz (1+mz |2
(5.4)
Noting that,
[OC| = Xi+y} = a and |OB| = i+ = a
(5.5)
Using equation (5.4) and (5.5) into equation (5.2) we have
n = Cos™ Xi X T Y1 ¥, = Cos” 1-m*
W +yE Gy 1+m’
(5.6)

13



Now using the definition of ‘m’ from equation (4.2), we finally arrive at

1+ 1+ Tan®(a)
(56.7)
Using some trigonometric identities, this reduces to the following equation.
- g ) Cos®(a) - Sin®(a) )| _ y _
n Cos [Cos (o) ( Cos? (@) Cos'[Cos(2a)] = 2«
(5.8)

Thus, the visibility angle n is computed to be 2«, the total antenna angle

described previously (see Figure 2). Before one computes the visibility time of
the satellite from the balloon or parachute antenna for any angle less than «
from the boresite of the antenna main lobe, one must consider the limiting case
of the visibility.

In the limiting case, the value of the angle a = o, will be such that the line AC in

Figure 2 will be tangential to the planet’s surface such as the line AD. The angle
o, can be computed rather easily from the geometry and is given below..

(5.9)

Tlimit

2 _ 2 2
Let My, = Tan(oy,) = A S (EJ -1
(5.10)

The coordinates of the point D(x,,, . Y...) ¢an be calculated as follows:

14



2 2 _ 2
X. - Myimit © + Mymit © + a -
m 1+ mi, 1 + mi, 1 + mi,

2 2 2
= |—C | . m _Mm C |, & -C
ylimit [1 + mlfm“J limit [J (1 + m:mn] 1 + m2 ]
(5.11)

Using these coordinates, one may compute the central limiting angle defined as
Nime » @S fOllows:

o Cos.,[@-o_s}
limit

(5.12)

Where D is the vector from O to D and OB is the vector from O to B in figure 2.

Using the coordinates of D, B and O (0,0) given in Figure 2, one may reduce
equation (5.12). Noting that,

I—O——QI = Vxlizm:; + YI?mit = a and l%l = 'X12 +y12 —

= a

(5.13)

2

Nt = COS'1[X1 Ximit T ¥4 ylimit:l
Imi a

(5.14)

Thus, at a particular altitude of the balloon or the parachute, the central angle
used for the time of visibility will be given by:

n = 2a For a < Cos“(%’]

(5.15)

15



The total visibility time i.e., the time for which the orbiter is visible to the
balloon/parachute assembly can be calculated using the following formula. It
should be noted that the period of the low altitude satellites is generally small
compared to the period of higher altitude satellites, hence, the balloon or the
parachute will easily see the entire traverse of the satellite.

a3/2
Sateliite Period = 2n T— (Sec)
71

a3/2

Visibility Period = Satellite Period (gl) = 21 — (Sec)
2n Ju
(5.16)

Where the parametery is the gravity constant of the planet (known as Kepler's
constant). The values of p are given for many planets in Table 1 below.

Table 1. A table of planetary constants.

Equitorial | Orbital Semi Orbital Mean Solar Kepler's
Planet Radius Major Axis | Eccentricity Distance Const, p
(km) (AU) € 10°(km) | kmA3/secr2
Sun 696000 o e 1.327x10"
Mercury 2487 .3871 .2056 57.9 2.232x10°
Venus 6187 7233 .0068 108.1 3.253x10°
Earth 6378 1.000 0617 149.5 3.986x10°.
Mars 3380 1.524 .0934 227.8 4.305x10°
Jupiter 71370 5.203 .0482 778 1.268x10°
Saturn 60400 9.519 .05639 1426 3.795x10
Uranus 23530 19.28 .0514 2868 5.820x10°
Neptune 22320 30.17 .0050 4494 6.896x10P
Piuto 7016 39.76 .2583 5896 3.587x10°

Figure 4 shows a plot of orbiter total visibility angle at the balloon/parachute as a
function of the normalized orbiter altitude. It should be noted that the central
visibility angle predicted by equation (5.15) is the visibility angle of the orbiter at
the balloon/parachute until the orbiter reaches the zenith direction of the
balloon/parachute. Hence, the total visibility angle will be twice that predicted by
the equation (5.15) to account for the visibility during the rise of the orbiter up to
the zenith of the balloon and then from zenith to setting point of the orbiter. This
factor of 2 is already taken into account in Figure 4.

16



Figure 4 is drawn for the normalized balloon/parachute altitude of 0.01: i.e., the
balloon/parachute altitude divided by the radius of the planet equals 0.01 = 1%
value. The parameter of the figure that changes from curve to curve is the
angleo that is specified in terms of the antenna pattern. It is specified in terms of
the dB down from the maximum of the antenna pattern. Thus, the 0.2 dB down
curve in Figure 4 is drawn for the angle a at which the antenna power gain is 0.2
dB down from the maximum of the antenna power pattern.

As an example, the total central visibility angle for the normalized
balloon/parachute altitude of 0.01 with the 3 dB down from the antenna maximum
(boresite) is about 62 degrees when the normalized orbiter altitude is 0.2 = 20%.
It should be noted that the figure is valid only for the normalized
balloon/parachute altitude of 0.01. A series of curves must be drawn for various
values of the normalized balloon/parachute altitude.

Figure 5 shows a plot of orbiter total visibility angle at the balloon/parachute as a
function of the normalized balloon/parachute altitude. This figure is similar to the
Figure 4; However, the independent variable is now the normalized
balloon/parachute altitude. In this figure too, the visibility is the total visibility
angle, including the factor of 2 explained in the Figure 4 description.

Figure 5 is drawn for the normalized orbiter altitude of 0.1: i.e., the orbiter altitude
divided by the radius of the planet equals to 0.1 = 10% value. The parameter of
the figure that changes from curve to curve is the angle a that is specified in
terms of the antenna pattern, as in the case of Figure 4.

As an example, the total central visibility angle for the normalized orbiter altitude
of 0.1 with the 3 dB down from the antenna maximum (boresite) is about 63
degrees when the normalized balloon/parachute altitude is 0.02 = 2%. It should
be noted that the figure is valid only for the normalized orbiter altitude of 0.1. A
series of curves must be drawn for various values of the normalized orbiter
altitude. Figure 6 plots a three dimensional graph for the total central visibility
angle (including the factor 2) as a function of the normalized orbital altitude and
normalized balloon/parachute altitude. In both the axis, the normalization factor is
the radius of the planet. This figure is harder to read compared to the Figure 3
and Figure 4 graphs due to its 3 dimensional nature; however, the advantage is
that both the normalized orbiter altitude as well as the normalized
balloon/parachute altitude can change simultaneously.

17
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Another disadvantage of the 3 dimensional representation is that the surface
drawn in Figure 6 can be drawn for only one dB down number. Figure 6 is drawn
for the angle o computed for 3 dB down condition.

Once the total visibility central angle is obtained using the above curves, one
needs some method to convert it into the actual visibility time of the orbiter to the
balloon/parachute assembly. The orbital period of the orbiter will naturally
depend upon the planet’s gravity constant, u, and the orbiter altitude above the
surface of the planet. Equation (5.16) given above shows the orbiter's orbital
period and is reproduced below with some modifications.

32

V)

Satellite Period = 21 — (Sec)
i
(5.17)
and
Visibili i _ . . (211] a*?
isibility Period = Satellite Period .| =— | = 21 == (Sec)
2n Ju
I'3/2 h 3/2
= (271) x (_n_) =11+ = (Sec)
= 180 ) | Ju r,
h
= TVisbiiityAngle X V[r—] (Sec)
p
(5.18)

Equation (5.18) connects the total visibility central angle, 2 = Ty ane » With the

actual visibility time in seconds. It will be very useful to compute the visibility
times of the orbiter from the balloon/parachute for any planet. Figure 7 plots the

function V[E] for the solar system planets; and Figure 8 does the same for the

rD
solar system moons of interest. To compute the visibility time, the following
procedure is to be followed.
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1. Using either Figure 4 or Figure 5, determine the total visibility angle
2 M = Ty ange depeNding on the available parameter values of the orbiter

and the balloon/parachute. Note down the rﬁ value used in this
p
determination.

2. Using either Figure 7 or Figure 8 depending upon which planet or moon

the orbiter is located at, for the value h noted down in the above step,

fo

note down the value of V[E].

T

3. Multiplying the value of the total visibility angle from step 1 with the value

of V(E)from step 2 produces the visibility time in seconds for the

rp
conditions used in step 1 and 2.

6.0 Useful Gain of Balloon Antenna and Orbiter S/C Range

The antenna gain directed towards the position of the satellite and the range
between the antenna and the satellite will be calculated next. This gain and the
range will be used to compute the link budget for the balloon/parachute telecom

system.

Position of the antenna = A(0, h,)

Position of the Spacecraft = S(a Cos(8,) , a Sin(s,))
(6.1)

The range of the satellite, R, from the antenna of the parachute/balloon antenna
for a given position of the satellite will be given by the following expression:

Range A R = \/52+cz-2308in(85)
(6.1)
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Many times a normalized range will be necessary in the theory to follow. The
normalized range is defined as the actual range divided by the radius of the
planet/moon around which the orbiter is in a given orbit. This division allows to
normalize the balloon/parachute altitude as well as the orbiter altitude as shown
below in equation (6.2).

2 2
Range Normalized A RN = R . \/(1 + H] + (1 + E"-J -2 [1 + D] (1 + h—b] Sin(e,)
2 r

(6.2)
The gain of the balloon/parachute antenna and the range to the satellite can be
used in a telecommunications link budget to calculate the space loss for the link

budget and ultimately, the sustainable bit rate by the link. Using the right triangle
KAS in Figure 2, we obtain:

ZKAS = Sin’ [———-a C°s(es)J
R
(6.3)

To compute the gain of the antenna at a given position of the satellite we need
the following expression:

0 = n - /KAS = 1 - Sin*[i:%s(—eﬁ]

(6.4)

For computing the useful gain for the communications link the following quantities
are computed:

o) - onf - safo G| - (e e

(6.5)
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Similarly, the sine of the angle may be found using the following formula:

Sin(6) = Sin{n - Sin"l:%]} = a Cos(8,)
R R

(6.6)

The gain of the antenna directed towards the satellite will then be obtained by the
formula given in equation (6.7) below. Note that the angle 6 used to compute the
gain of the antenna in equation (6.7) is a function of the satellite position 6,

altitude of the balloon/parachute hy, and the orbital radius of the spacecraft a.
The relationship between the angle 8 and the satellite position 6, is defined in

the equations (6.5) and (6.6).

Cos[%l Cos(e)) - Cos(l;\—l) 2
Sin(8)
6() = )

2n

) 2
- 0.000781104 - 0.000921702 (%') +0.0926785 (%') - 0.369984 (1;—

4 5 6
+0.892439 (-T;—') - 0.389927 (%’) +0.04814 [%’]

. (6.7)

\ f[%’) Cos(Ir)‘—I Coss(;)()))- Cos(-T)I—I)2
(6.8)

Where the function f(%'] is given by the following formula:
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f l 2 MNen

Y - 2
[ A ) - 0.000781104 - 0.000921702 [%I) + 0.0926785 (%] - 0.369984 (

|
|

(6.9)

4 5
+0.892439 (%I) - 0.389927 (%I) + 0.04814 [

>3 >3

The link from the balloon/parachute dipole antenna to the orbiter spacecraft
naturally depends upon many parameters; however, the only parameters that are
dependent on the balloon/parachute altitude are the gain of the transmitting
antenna (the dipole) and the range from the transmitting antenna to the orbiting
spacecraft, designated by R. As this altitude changes, the range R becomes a
function of time. This analysis assumes all the other parameters of this scenario
constant. This is not really true in actual practice. The atmospheric loss
parameter for example, does not remain constant and depends upon the actual
length of the path through the atmosphere. We will assume for the sake of the
first approximation that such parameters have a definite value for the
computation of the link between the parachute/balloon and the orbiter but the
values does not change while the satellite is in motion. The major change in the
link budget is due to the change of the range R; the change of the gain of the
antenna due to the satellite position change.

The range R gives the space loss given by the following well-known equation:

}\. 2
Space Loss = (4 )

2
Space Loss Using Normalized Range = [ZR_)ERW)]
(6.10)

Where the normalized range, RN, is defined in equation (6.2). The antenna gain
pattern provides the useful gain of the antenna in the spacecraft direction. Using
the above equations, the value of the gain directed to the spacecraft multiplied by
the space loss is given by the following formula:
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Cos[(%’) [ ‘/azjcszi_nz((:i ;;(es) H - Cos(%l)
aCos(8,)

\/a2+ c’-2ac Sin(s,)

A
4t R

Useful
Gain

Space
Loss

(

.

(6.11)

Equation (6.11) provides the effect of the space loss and the useful gain of the
balloon/parachute directed towards the orbiter spacecraft. This is a useful
formula; however, sometimes it is helpful to convert this formula into the
quantities normalized by the radius of the planet. Using the normalized values of
the parameters ‘a’ and ‘c’ (dividing the parameters by radius of the planet) along
with the normalized value of the range RN defined in equation (6.2) we obtain an
equivalent formula given below:

Space Loss

Using Normalized x

Range Value

Useful B
Gain

-

RN)J

(6.11a)

It should be noted that the gain function now appears as a function of the orbiter
satellite position angle 6,. Thus, as the orbiter satellite moves around in its orbit,
a different value of the parachute/balloon antenna gain will be directed towards it
and, of course, the parachute/balloon to the orbiter range changes too. Equations
(6.11) and (6.11a) incorporate effects of range change as well as antenna useful
gain directed towards the orbiter into one formula that may be used for the link
analysis of the link mentioned above.
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Generally, the altitude of the parachute or the balloon when they are deployed
from the entry vehicle depends upon the experiments to be performed on the
way to the planet's surface or while going around the planet, as the case may be.
If the planet is a gaseous planet, there is another question about the gaseous
absorption of the radiated waves such as the ammonia gas absorbs the most
and the absorption is proportional to the square of the link frequency. Thus, this
consideration may force the telecom engineer to use the UHF frequency because
this has the minimal gaseous absorption. However, the UHF has disadvantage in
that the telecom equipment is larger in weight and volume and the gains of the
antennas of the link are lower which is not made up by the lower space loss due
to the lower frequency.

As the orbiter spacecraft goes around in its orbit, there is a limiting angle at which
it just starts seeing the balloon and goes to the zenith of the balloon and then
repeats the same in a reverse order. This should be quite easily seen in the
Figure 2. One needs the angle 6, when the orbiter just rises over the horizon of
the balloon above the surface of the planet. This is the limiting angle o, and

given by the following expression:

Limiting 6, angle = 6, = = . Cos" b - Cos™
s sLimit 2 rp + hb rp
= X . Cos" - Cos™'| 1
2 14 M 140

(6.12)

Neglecting the surface diffraction, equation (6.11) indicates that the
balloon/parachute dipole antenna gain received by the orbiter must follow the
following rule.

if o, > 6 = Usable Antenna Gain = Gain Pattern (8,)

sLimit

f 6, < 8 = Usable Antenna Gain= 0 (not dB!)

sLimit

(6.13)
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It should be noted that the limiting value of the spacecraft location angle 6,

depends on the balloon altitude and the orbital radius of the orbiter; hence, as the
balloon/parachute changes its position with respect to the surface of the planet,
the limiting spacecraft location angle also changes.

Figure 9 plots the useful gain of the antenna directed towards the orbiter from the
balloon/parachute dipole antenna as a function of the spacecraft location angle.
All the parameter values are given in the graph. The plot starts from a limiting
value of the spacecraft location angle described above because below this angle
the orbiter cannot see the balloon/parachute antenna. The orbiter altitude to
planet radius ratio is held constant at 0.5: i.e., the spacecraft altitude is half the
planet's radius. The parameter of the graph is the normalized altitude of the
balloon or the parachute, hy/r,. This parameter is varied from 0 to 0.5 in the
particular steps shown in the figure. The useful gain of the dipole antenna located
on the balloon/parachute is reasonably good for the orbiter till the orbiter position
angle of about 65 degrees because for the parameter values given for the plot,
the orbiter spacecraft stays within the (+2 to —3 dB) region of the antenna. At the
time when the orbiter reaches the position angle of 65 degrees, the antenna gain
directed towards the orbiter falls off rapidly. By the time the spacecraft location
angle becomes about 80 degrees, depending on the parameters of the orbit and
altitude selected, the gain falls below -5 dB from the maximum.

Figure 10 is similar to Figure 9 in that it also plots the useful gain of the antenna
directed towards the orbiter from the balloon/parachute dipole antenna as a
function of the spacecraft location angle. However, the parameter of these curves
is the normalized orbiter altitude: i.e., the orbiter altitude divided by the planet's
radius. The balloon/parachute altitude to planet radius ratio is held constant at
0.05, i.e., the spacecraft altitude is 5% of the planet’s radius. This parameter is
varied from 0.1 to 1 in the particular steps shown in the figure 10. The plot starts
from the limiting value of the spacecraft position angle depending upon the other
parameter values selected. The figure shows that the useful gain of the
balloon/parachute dipole antenna remains between the (0 to 2 dB) range for
about 70 degrees orbiter spacecraft location angle depending upon the
parameter value selected. At the time when the orbiter reaches the position
location angle of 75 to 80 degrees, the antenna gain directed towards the orbiter
falls off rapidly, and by the spacecraft location angle of about 80 degrees, the
gain falls below -5 dB of the maximum.

Figure 11 plots the normalized range between the orbiter and the
balloon/parachute. The parameter of the graph is the normalized altitude of the
orbiter. The normalized balloon/parachute altitude is held constant to a value of
0., 01. All the normalizations are carried out using the planet radius r,as the
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basis. The figure shows that for any normalized altitude of the orbiter, as the
spacecraft position angle increases fro 0 to 90 degrees, the range between the
orbiter and the balloon decreases. The actual range may easily be obtained by
simply multiplying the value read off from the graph by the planetary radius.

Value Read

Actual Range (km) = (From Figure 11

] x Planet Radius (km)

(6.14)

The maximum normalized range is a function of the normalized balloon altitude
and the normalized orbiter altitude. In fact, the maximum normalized range may
be computed using the following formula:

(6.15)

The maximum range occurs when the line joining the balloon/parachute antenna
center to the focal point of the orbiter antenna becomes tangential to the planet
surface. This equation is plotted in Figure 12 as a function of the normalized
balloon/parachute altitude. The figure shows that for any normalized orbiter
altitude, after an initial small range of normalized balloon/parachute altitude, the
maximum range increases almost linearly. To obtain the actual maximum range,
following equation may be used:

Value Read

Actual Maximum Range (km) = .
From Figure 12

] x Planet Radius (km)
(6.16)

Equations (6.14) and (6.16) provide the means of finding actual quantities when
needed for further analysis.

Figures 13 and 14 plot the space loss using the normalized range given in
Equation (6.15), only in Figure 13 a S-Band (2450 MHz) frequency is used and
Figure 14 uses a UHF (401.6) MHz frequency. It should be remembered that the
number read from these two figures are not the actual space loss, because the
normalized range is used instead of the actual range.
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To obtain the actual dB loss due to the range, use the following formula:

dB Value Read From

Actual Space Loss (dB) = (Figure 13 or Figure 14

] - [(Planet Radius)zJ
(a)

(6.17)

To help computation of the actual space loss, Figure 15 is provided. This figure

plots the [(Planet Radius)z] as a function of the planet radius and shows the
(dB

points for the known planets and moons. The same figure may be used if the
planetoid radius is known.

As an example of the use of the equation (6.17), suppose a mission sends a
spacecraft in the Martian atmosphere and the spacecraft that brought the balloon
becomes the orbiter for the balloon link. Suppose the orbiter altitude to Mars
radius ratio is equal to 0.1. It is desired to compute the worst case of space loss
when the balloon altitude to Mars radius is 0.01 for a UHF link (frequency 401
MHz) between the balloon and orbiter.

Figure 12 shows that the worst-case value of the space loss is about —20 dB
when the orbiter position angle is about 58 degrees. Thus, we have obtained the
value for the first quantity of the right hand side of the equation (6.17). Next, the
table in the Figure 15 shows that for Mars the y-axis reads 70.58 dB. This is the
second factor in equation (6.17) to evaluate the space loss. The space loss for
this example is obviously equal to:

Actual Space Loss = -20 - 70.58 = -90.58 (dB)
(6.18)

it will be desirable to see the effect of the useful antenna gain directed towards
the orbiter and the space loss simultaneously on the link. Figure 16 and Figure
17 plot the two quantities multiplied together in terms of decibels for the S-Band
frequency and for UHF frequency. These figures follow the shape of Figure 13
and 14 for most of the part because the loss due to the range is much too large
for the antenna gain to counteract effectively. However, as the spacecraft
position angle becomes larger at which the balloon/parachute antenna gain falls
off much rapidly compared to the reduction of space loss magnitude due to the
reduced range, the product also falls of rapidly. It should be noted that the dipole
antenna is designed for the UHF and S-Band separately: i.e., the same antenna
is not used for both frequencies. Both the figures use the normalized range while
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calculating the space loss; hence, to get actual numbers from these figures, one
needs to follow the procedure outlined in equation (6.17) above: i.e., use the
following equation.

dB Value Read From

Actual Total Loss (dB) = ) )
Figure 16 or Figure 17

] - [(Planet Radius)z](da)
(6.19)

The value of second factor in equation (6.19) is obtained from the Figure 15, as
was done before. For the example set up for showing the use of equation (6.17),
the actual total loss, i.e., the space loss and the antenna gain in dB can be
calculated using Figures 15 and 17. For the orbiter altitude to Mars radius ratio of
0.1 and balloon altitude to Mars radius ratio of 0.01 the Figure 17 gives the worst-
case value of total loss of about —34 dB. This is the value for the first quantity of
the right side of equation (6.19). Figure 15 provides the value of 70.58 dB. Thus
the total value of the actual total loss can be found by the following equation.

Actual Total Loss = -34 - 70.58 = -104.58 (dB)
(6.20)

7.0 Computation of Sustainable Bit Rate for Balloon — Orbiter Link

To compute the bit rate of a communications link between the balloon/parachute
and the orbiter spacecraft, one needs to define additional link parameters. The
parameters will characterize the balloon/parachute and the orbiter
telecommunications systems. Parameters include system losses for both the
telecom system, antenna pointing loss for the orbiter receiving antenna, and the
system noise temperature for the receiving system etc.

It should be realized that this is not an attempt to make a complete link budget for
the link between the balloon/parachute and the orbiter; rather, the results will be
sufficiently accurate only for a quick bit rate analysis. The parameters mentioned
above and some more are given in the following Table 2 and these will be used
to derive the further results.
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Table 2. Balloon/parachute to orbiter link parameters

Frequency Used 2250 MHz (S-Band)

Balloon or parachute altitude/planet radius 0.01

Orbiter altitude/planet radius 0.1

Balloon or parachute antenna Dipole with Length = /2
Balloon or parachute transmit system losses 2 dB

Transmit system error correcting code R=1/2, k=7 Convolutional Code
Eb/NO requirement for a BER = 107° 4.46 dB

Transmitted RF power 1W

Transmitted signal format BPSK — Suppressed Carrier
Orbiter receiving antenna Parabolic reflector.

Orbiter receiving antenna efficiency 55%

Receiving system pointing and system losses 3 dB

Receiver system noise temperature 400 K = 26.02 dB
Boltzmann’s constant -228.6 dB/K

Carrier Tracking Assume carrier locked

Data margin of the link 0dB

Using these parameters the following 6 figures (Figure 18 to Figure 23) were
generated. These figures plot the normalized bit rate in dB units as a function of
the orbiter spacecraft position in its orbit for a particular orbiter spacecraft receive
antenna diameter. The data margin is assumed to be 0 dB because the best
possible bit rate is desired. JPL/Mission standards may require a different data
margin and, hence, the curves must be modified accordingly to obtain the
allowable bit rate values.

It should be noted that since the balloon/parachute antenna has a length of = /2
meters regardiess of the frequency of use i.e., the length of the dipole changes
with the frequency and, consequently, the gain of the dipole antenna will be the
same for any frequency. With this assumption the figures 18 to 23 do not change
with the change of frequency. The change in the space loss is cancelled by the
change of gain of the receiving parabolic reflector antenna (constant) while the
transmitting dipole antenna maintains the same gain due to the change in its
length depending upon the frequency. It should be noted that these figures are
drawn assuming that the link starts as soon as the orbiter becomes visible to the
balloon/parachute.

Following is an example of the use of the figures. Suppose one needs to find the

bit rate possible for the conditions given in the above table with a receiver
antenna of 1-meter diameter. This implies that one must use Figure 21 in the 18
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to 23 Figures. From this figure, for the balloon altitude to the planet ratio of 0.01
and for the orbiter altitude to planet radius ratio of 1, we select the highest curve.
For the orbiter position angle to be 70 degrees, the normalized bit rate is read to
be 154 dB. To obtain the real world quantities, we need to add to the number just
obtained the normalization constant in dB. This is done using the following
equation.

dB Bit Rate Value

Actual Data Rate (dB) = (From Figures 18 to 23

] - [(Planet Radius)’ ](da)
(7.1)

If we assume that the planet is Mars, Figure 15 provides the value of 70.58 dB
for the normalization constant (the second bracket in Equation 7.1); and this
value must be subtracted from 154 dB. Thus,

Actual Data Rate = 154 - 70.58 = 83.42 dB
(7.2)

Thus, the possible maximum bit rate may as large as 10%%*? bits per second or
approximately 220 Mbps. It should be noted that as the parameter values
change, it is only a simple matter to see the effect of the changed values on the
sustainable data rate. As an example, if the radiated RF power is reduced to 10
mW, because the original computations used 1 W transmitted power to produce
the curves, the current bit rate will be changed to 220 * (10/1000) Mbps, or 2.2
Mbps. Another example could be: if a 3 dB data margin is desired then the actual
data rate in equation (7.2) should be changed to 83.42 — 3 = 80.42 dB and this
equals 10%%2 or with a 0 dB margin this will support about 110 Mbps and if a 6
dB data margin is desired then it will support 55 Mbps data rate etc. Note that
this computation for the bit rate supportable by the link is done only at one point
on the orbiter's position: namely 70 degrees. For any other position location
angle, the calculations must be repeated.

8.0 Computation of Data Volume Received on Orbiter.
To compute the total data gathered per pass, one needs to write the equation

(6.11a) as a function of time. This, in turn, implies that the spacecraft position
angle 8, be converted into time. This can be done easily considering that the

44



orbiter is in a circular orbit and hence the spacecraft speed remains constant
throughout its flight around the parent body. The minimum spacecraft location
angel, 8., that was defined in the equation (6.12) (which is reproduced below

for convenience) is the starting point for the time, 't i.e., t=0. The progress of

time is formulated as follows.
r r
6, . = = - Cos" P - Cos'| —2
sLimit 2 [rp + hb ] (rp + h]

a

Limiting 6, angle

= — - Cos - Cos’
2 1+ ny 1+ h
rP rp
(8.1)
Let
Satell A )
atellte Period A T, = 2rn =— ec
= p \/E
(8.2)
The time required for the spacecraft position angle, 6_, to change from e, to

the current position, 8,, can be written down easily because of the uniform speed
of the circular orbit satellite in its flight path.

es - esLimit = (ZTTC ] t = 2n ! ?rt— l
p p
tn

B, = 2nt, + 8

s

2nt

>

sLimit

(8.3)

Where t, is the normalized time. After substituting equation (8.3) into (6.11a) we
obtain the following equation.
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h

[1+~:1] Sin(2m t, + 0, m) - (1+r—°]
Cos (I'J P e -Cos(m)

(RN)

p

(1+E] COS(2 T tn + BsLirnit)

(RN)

i ~ )]
(8.4)

The normalized time, t,, was defined in the equation (8.3); however, its
connection with the body around which the orbiter is stationed is given below.

3/2

(8.5)

With g (t.) = equation (8.4), and using balloon/parachute to orbiter link parameter
values of Table 2 one may write down the equation for the total bits generated in
a pass of the orbiter. It should be noted that we have assumed (as was done
previously) that the velocity of the balloon/parachute is negligible with respect to
the visibility time of the orbiter. In that case, the total visibility time would be twice

the time the satellite needs to go from o, to n/2.
3 Ouumic
4 2= GL
Bits Gathered )

(8.6)

Where the parameter GL is defined using the parameters defined in the Table 2
as follows:
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GL = - Orbiter System Loss (dB) - Balloon System Loss (dB) - Reqd. EbONO (dB) +

Atmospheric Loss (dB) + 10 * Log,, (PowerTransmitted) (dB) +

Orbiter Antenna Gain (dB) + 228.6 - 10* Log,, (Teq)
(8.7)

One important assumption about the orbiter antenna is that the antenna pointing
of the orbiter antenna is done perfectly. One possible way this can be done is the
proper use of the balloon/parachute position knowledge with respect to the
orbiter. Another way of achieving the same thing is by providing a pilot beacon on
the balloon/parachute that always transmits and the orbiter senses this pilot and
orients its antenna towards that direction automatically.

Equation (8.6) is plotted in Figure 24 as a function of the ratio orbiter
altitude/radius of the planet, (h/r,). The figure shows that the bits accumulated by
the orbiter becomes gradually less as the parameter h/rp increases. This is due to
the fact that as the altitude of the orbiter increases, the space loss increases and
at the same time the antenna gain directed towards the orbiter decreases.

The amount of bits gathered using equation (8.6) are the data using the
normalized quantities for the space loss and the orbiter period. Thus, to use the
number obtained from equation (8.6), one needs to multiply a constant given
below:

Normalization 21 [1 . h ]3/2
-
p

Constant J ru

(8.9)

This constant will be different for different planets and their moons. Figure 25
shows the normalization constant in dB for each planet and major moons of the
solar system. Following is an example of computation of the total data bits
received from the balloon/parachute at the orbiter. Suppose the balloon is
descending in Venus’s atmosphere and the orbiter is at an altitude of 0.5 Venus
radii, i.e., h/r, = 1/2. Also the antenna carried by the orbiter is the parabolic
reflector antenna of diameter 0.25 m (25 c¢m) and according to our previous
assumptions, is automatically pointed to the balloon/parachute position. This
automatic pointing of the orbiter antenna implies automatic tracking of the
balloon/parachute as the relative positions between the balloon/parachute and
the orbiter changes.
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With all the assumptions given in Table 2 for the link between the
balloon/parachute held valid, the total number of normalized bits accumulated by
the orbiter is read from Figure 24 to be 152 dB. To convert this into the real data
collected, Figure 25 gives for the h/r, of 0.5 and for the planet Venus a value of
the normalization constant of -36 dB. Thus, the total actual data gathered by the
orbiter at 0.5 h/r, equals 152 — 36 = 116 dB, or equal to 10"®bits. It should be
noted that if the actual values used in the link budget between the orbiter and the
balloon is different than the assumptions, the results obtained may be scaled
appropriately to get the correct results. For instance, if the actual transmitted RF
watts is, as an example, 1 mW, then, since the assumptions that produced the
figure 25 has the transmitted RF watts to be 1 W, the true value of the total data
gathered by the orbiter will be 10"® x 10° = 10%¢ bits etc.

9.0 Balloon/parachute Oscillations

It is conceivable that the balloon or the parachute carrying the telecom and
science package may execute oscillations while descending to the body’s (planet
or the moon as the case may be) surface. This is mainly due to the presence of
the atmosphere as well as the atmospheric winds. The above analysis has
ignored this problem; i.e., the analysis is valid for a perfectly still atmosphere
through which the balloon or the parachute is descending. In a sense, this is the
‘mean’ or the ‘average’ result of the case with oscillations and a new theory must
be developed to fathom the details of the oscillatory case. This is attempted
below.

Assumptions for the oscillations
* The oscillations will be small in nature (e.g., the end-to-end

oscillations will not cover more than 40 degrees from its vertical
position).

e The balloon/parachute assembly does not move considerably in the
vertical direction during each oscillation period.

e The oscillations described by the balloon/parachute assembly may
be approximated by the classical pendulum motion: i.e., all the mass
of the assembly is concentrated in its gondola and the length of the
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pendulum string is equal to the height of the inflated
balloon/parachute assembly.

o For the first degree of approximation, it will be assumed that the
atmosphere does not put a damping force on the oscillations (this is
not true in actual practice; however, the results obtained by using
this assumption may not be too different from the actual results).

Oscillation Theory

Figure 27 shows the balloon/parachute as a pendulum; the necessary
parameters to describe the motion are shown in the figure.

We will start with the well-known classical equation describing the motion of a
pendulum given below. It is assumed that the balloon/parachute executes
vibrations with the center of the balloon/parachute shown in the figure as the
pivot. Following parameters are assumed.

The distance between the pivot L (m)

and the center of gondola mass

Mass of the oscillating gondola M (kg)
Rotational inertia of the gondola ML2
around the pivot

Angel of oscillation o (t)
Planet’s gravitational acceleration dp (m/secz)

Equation of pendulum:

M L2 [M] = -Mg, LSin[o(t)]

dt?
(9.1)
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Figure 27. Balloon/parachute as a pendulum.
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Hence,

clo] | [E’Lﬁ] sin[o (t)]

dt?
(9.2)

The solution to this differential equation is not very simple and is very difficult to
use. As was mentioned above, in the assumptions that the total oscillation angle
is below 40 degrees (which is a very practical assumption), the approximation
Sin(x) = x may be used. Using this approximation, equation (9.2) reduces to the

one shown in (9.3) and now a simple harmonic solution does exist.

o] _ -(&}Mt)

dt? L
(9.2)

The solution to this linear differential equation is easy to find and is given below,
where ¢ (0) and ¢ (0) are the initial conditions of the balloon/parachute

oscillation scenario.

-~ (9.3)

Figure 28 plots ¢ (t) given by the equation (9.3) for L = 10m , 20m, and 30 m for

Earth. One may notice that as the length of the pendulum increases, the period
also increases.

Even though the angle ¢(t) is with respect to the vertical line passing through the

pivot, considering the dimensions of the orbital elements and the altitude of the
balloon/parachute compared to the dimensions of the balloon, the vertical
antenna will be assumed to be tilting by the same angle in both directions. The
points B(x,, y,)and C(x,, y,)must be changed to accommodate the pendulum like

motion of the balloon/parachute.
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Pointing Angle ‘g h

Figure 28. Balloon/parachute pendulum motion.

The point B (x, (t). v, (t)) is the point B(x,, y,) in Figure 2, including the pendulum -
like displacement of the radiating antenna and similarly, the point C(x, (1), y, (1))
is the point C(x,,y,) in Figure 2, including the pendulum-like displacemeht of the
radiating antenna. These points are given by the following formulas:

m(t) c a? - ¢?
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(9.4)
Similarly, one may compute the second point:
. - m(t) ¢ +\/ m(t) c } . 22 - 2
’ 1+ (m() 1+ (m) 1+ (m(1)
_ c | - ¢ m(t)czz+ 2-022
2 [1 + (m(t))J () J[1 + (m(t))J 1+ (m(t)
(9.5)
Where,
m(t) = Tan(a + ¢(t))
(9.6)

The anglea provides the angle from the boresite of the antenna (the méximum
gain direction) for which the communications between the satellite and the
gondola can be sustained, as before.

The visibility of the satellite may start from the satellite position (Xjmit, Yimit) to the
zenith of the balloon/parachute (see Figure 2). The visibility due to the other side
of the satellite orbit beyond zenith is the same as the side under consideration
and, hence, can be taken into account by doubling the visibility time later on (see
the assumptions). Thus one is interested in the angle < AOD in the figure. This
angle is obtained by the following formula:

4| OA - OD A 0 X + € Vi | Vi
ZAOD = Cos'|=—==| = Cos'|—mt ~7imt| = (Cog|imt
[IQ_AI @lJ [ ca ] > [ 2 ]

62



(9.7)

Where the (Ximit, Yimit) coordinates of the limiting position of the visibility are given
in equation (5.11). Using (9.7) along with the definition of my,; given in (5.10),
one obtains:

o0« coe| (1) (&) - [[i- (5] [ (]
C a C
(9.8)
Where,
rp _ 1 rp - 1
€_1+& and §_1+ﬂ
rp rp
(9.9)

With the help of equations (9.8) and (9.9), the position of the satellite at any time
t" in the visibility region, S(xs(t), ys(t)), may be found using the following formula:

0 < t < (‘AOD)T
2r

S(x, (1), y.(1)) = 8 a-Cos[AAOD- -’;_ + [2T_"H a~Sin[4AOD- "5 + (ZT—“H

P P

) | )
(9.10)
Where £ AOD is defined in equation (9.7) and T, the orbital period of the satellite

is given in equation (5.16) above. Note that at t = 0, the equation (9.10) reduces
to the satellite position (Ximt, Yimit), @S can be seen from Figure 2.
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The visibility and establishment of the link now depends upon the satellite being
seen by the gondola of the parachute or balloon in this dynamic situation. The
visibility can be determined using the following condition:

TRUE =  Orbiter is Visible

FALSE =  Orbiteris not Visible

(9.11)

It should be noted that the visibility of the orbiter from the balloon/parachute
gondola now depends upon the initial condition of the balloon/parachute
oscillatory motion as well as the position of the orbiter at that instant of time. A
more detailed analysis may be performed, as was done for the non-oscillatory
case; however, if the oscillations are small, the theory developed above will still
be applicable.

This investigation into the balloon/parachute communications with an already
existing orbiter spacecraft has the conclusions that follow.

10.0 Conclusions

A unified theory of telecommunications between a balloon/parachute to an orbiter
using a dipole antenna is presented. The theory assumes that the transmitter and
the receiver are both in the orbital plane of the orbiter. Presentation shows
methods to calculate the following quantities:

o Relative positions of the balloon/parachute and the orbiter.

o Visibility time of the orbiter at the balloon/parachute for a defined
gain angle of the dipole transmitting antenna.

o Useful dipole gain value directed towards the orbiter and the
balloon/parachute to orbiter range value at any point of the orbiter’s
orbit.
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e Computation of the maximum sustainable bit rate between the
balloon/parachute to orbiter link at any relative positions of the two
for different antenna diameters of the orbiter parabolic reflector
antenna.

e Maximum attainable total received data bits at the orbiter.

The whole theory is presented in a manner such that the results produced may
be applied to the balloon/parachute being at any planet of the solar system or the
moons considered. Clear examples are given for the users to obtain the desired
results quickly and efficiently.
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